Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0289060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011106

RESUMO

Fall armyworm (FAW) is a global agricultural pest, causing substantial economic losses in corn and many other crops. Complicating efforts to control this pest is its capacity for long distance flights, which has been described in greatest detail for the central and eastern sections of the United States. FAW infestations are also routinely found in agricultural areas in southern Arizona, which lie beyond the western limits of the mapped migratory pathways. Climate suitability analysis found that the affected Arizona locations cannot support permanent FAW populations, indicating that these FAW most likely arise from annual migrations. A better understanding of this migration would provide insights into how large moth populations can move across desert habitats as well as the degree of gene flow occurring between FAW populations across the North American continent. In this study the Arizona populations were genetically characterized and compared to a selection of permanent and migratory FAW from multiple sites in the United States and Mexico. The results are consistent with migratory contributions from permanent populations in the states of Texas (United States) and Sinaloa (Mexico), while also providing evidence of significant barriers to gene flow between populations within Mexico. An unexpected finding was that two genetically distinct FAW subpopulations known as "host strains" have a differential distribution in the southwest that may indicate significant differences in their migration behavior in this region. These findings indicate that the combination of mitochondrial and Z-linked markers have advantages in comparing FAW populations that can complement and extend the findings from other methods.


Assuntos
Migração Animal , Zea mays , Animais , Texas , México , Spodoptera/genética , Arizona
2.
Front Insect Sci ; 3: 1104793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469489

RESUMO

Introduction: Biophysical approaches validated against haplotype and trap catch patterns have modeled the migratory trajectory of fall armyworms at a semi-continental scale, from their natal origins in Texas or Florida through much of the United States east of the Rocky Mountains. However, unexplained variation in the validation analysis was present, and misalignments between the simulated movement patterns of fall armyworm populations and the haplotype ratios at several locations, especially in the northeastern US and Canada, have been reported. Methods: Using an expanded dataset extending into Canada, we assess the consistency of haplotype patterns that relate overwintered origins of fall armyworm populations to hypothesized dispersal trajectories in North America and compare the geographic distribution of these patterns with previous model projections. Results and discussion: We confirm the general accuracy of previous modeling efforts, except for late in the season where our data suggests a higher proportion of Texas populations invading the northeast, extending into eastern Canada. We delineate geographic limits to the range of both overwintering populations and show that substantial intermixing of the Texas and Florida migrants routinely occurs north of South Carolina. We discuss annual variation to these migratory trajectories and test the hypothesis that the Appalachian Mountains influence geographic patterns of haplotypes. We discuss how these results may limit gene flow between the Texas and Florida natal populations and limit the hereditary consequences of interbreeding between these populations.

3.
J Econ Entomol ; 115(5): 1409-1416, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35899806

RESUMO

Spodoptera frugiperda is a major agricultural pest that has invaded China since January 2019. Given that most of the individuals present in China carried the diagnostic rice-strain mtDNA (COI-RS), there was no efficient method to distinguish populations of S. frugiperda. In this study, we identified and characterized two variant microsatellite alleles in the mitochondrial NAD6 gene of S. frugiperda retrieved from the National Center for Biotechnology Center GenBank. We then sequenced partial NAD6 genes containing the microsatellite region and the diagnostic COI barcoding gene (used to distinguish the corn-strain and the rice-strain) of 429 invasive S. frugiperda individuals that were collected from the main infested regions in China during 2019-2020. Our data indicates that two kinds of interrupted repeat sequences, (ATA)4T(ATA)3 and (ATA)5T(ATA)3, exist in the microsatellite region which we defined as the deletion type (NAD6-D), and the insertion type (NAD6-I) based on the repeat units' differentiation, respectively. The presence of these two microsatellite types in the mtDNA genome of S. frugiperda was further confirmed with the sequencing results in 429 samples. Moreover, NAD6-I and NAD6-D types were both present in individuals with COI-RS, while only NAD6-D type was detected in the COI-CS individuals. Interestingly, the two microsatellite types suggested a possible geographic distribution: the western migratory route (Yunan and Chongqing) was comprised exclusively of NAD6-I type, while both NAD6-I and NAD6-D types were identified in the predicted eastern migration trajectories (Hainan, Guangxi, Shandong, etc.). These results suggested that NAD6-D and NAD6-I types may be useful in distinguishing between populations, analyzing the evolutionary mechanism of mtDNA microsatellite polymorphism, inferring the migratory route of S. frugiperda in China, and developing precise and integrated control strategies for S. frugiperda.


Assuntos
Repetições de Microssatélites , Oryza , Animais , China , DNA Mitocondrial/genética , Oryza/genética , Spodoptera/genética , Zea mays/genética
4.
Ecol Evol ; 12(3): e8706, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356552

RESUMO

Speciation is the process through which reproductive isolation develops between distinct populations. Because this process takes time, speciation studies often necessarily examine populations within a species that are at various stages of divergence. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is comprised of two strains (R = Rice & C = Corn) that serve as a novel system to explore population divergence in sympatry. Here, we use ddRADSeq data to show that fall armyworm strains in the field are largely genetically distinct, but some interstrain hybridization occurs. Although we detected F1 hybrids of both R- and C-strain maternal origin, only hybrids with R-strain mtDNA were found to contribute to subsequent generations, possibly indicating a unidirectional barrier to gene flow. Although these strains have been previously defined as "host plant-associated," we recovered an equal proportion of R- and C-strain moths in fields dominated by C-strain host plants. As an alternative to host-associated divergence, we tested the hypothesis that differences in nightly activity patterns could account for reproductive isolation by genotyping temporally collected moths. Our data indicates that strains exhibit a significant shift in the timing of their nightly activities in the field. This divergence in phenology creates a prezygotic reproductive barrier that likely maintains the genetic isolation between strains. Thus, we conclude that it may be ecologically inaccurate to refer to the C- and R- strain as "host-associated" and they should more appropriately be considered "allochronic strains."

5.
PeerJ ; 9: e12195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631319

RESUMO

The fall armyworm, Spodoptera frugiperda, is a polyphagous global pest with a preference for gramineous crops such as corn, sorghum and pasture grasses. This species is comprised of two morphologically identical but genetically distinct host strains known as the corn and rice strains, which can complicate pest management approaches. Two molecular markers are commonly used to differentiate between strains, however, discordance between these markers can lead to inconclusive strain identification. Here, we used double digest restriction site associated DNA sequencing to identify diagnostic single nucleotide polymorphisms (SNPs) with alleles unique to each strain. We then used these strain-specific SNPs to develop four real-time PCR based TaqMan assays to rapidly and reliably differentiate between strains and interstrain hybrids. These assays provide a new tool for differentiating between strains in field-collected samples, facilitating future studies on strain population dynamics and interstrain hybridization rates. Understanding the basic ecology of S. frugiperda strains is necessary to inform future management strategies.

6.
Evol Appl ; 14(7): 1778-1793, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295363

RESUMO

The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is an important pest of commercial cotton across the Americas. In the United States, eradication of this species is complicated by re-infestations of areas where eradication has been previously successful and by the existence of morphologically similar variants that can confound identification efforts. To date, no study has applied a high-throughput sequencing approach to better understand the population genetic structure of the boll weevil. Furthermore, only a single study has investigated genetic relationships between populations in North and South America. We used double digest restriction site-associated DNA sequencing (ddRADseq) to resolve the population genomic structure of the boll weevil in the southern United States, northern Mexico, and Argentina. Additionally, we assembled the first complete mitochondrial genome for this species and generated a preliminary whole genome assembly, both of which were used to improve the identification of informative loci. Downstream analyses revealed two main lineages-one consisting of populations found geographically west of the Sierra Madre Occidental mountain range and the second consisting of populations found to the east-were revealed, and both were sub-structured. Population geographic structure was consistent with the isolation by distance model, indicating that geogrpahic distance is likely a primary mechanism driving divergence in this species. Boll weevil populations from Argentina were found to be more closely related to the eastern lineage, suggesting a recent colonization of South America by the eastern lineage, but additional sampling across Mexico, Central America and South America is needed to further clarify their origin. Finally, we uncovered an instance of population turnover or replacement, highlighting the temporal instability of population structure.

7.
BMC Genomics ; 22(1): 179, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711916

RESUMO

BACKGROUND: The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. RESULTS: In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. CONCLUSIONS: Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Assuntos
Fluxo Gênico , Zea mays , Animais , Brasil , Humanos , Quênia , Spodoptera , Zea mays/genética
8.
Pest Manag Sci ; 77(1): 335-342, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32729162

RESUMO

BACKGROUND: The widespread adoption of genetically modified crops, including Bacillius thuringensis (Bt) crops that target chewing insects, has transformed agricultural pest management. This increased use of Bt has raised concerns about the onset of resistance amongst target pests. Recent studies have shown that for some caterpillars, nutritional foraging (e.g. the ratio of proteins and carbohydrates consumed) can affect the insect susceptibility to the Bt toxin Cry1Ac. However, studies on both nutritional foraging and Bt susceptibility tend to rely on laboratory colonies without specifically addressing physiological differences that may occur between populations of the same species. Here, we used choice assays, no choice assays and dose response assays to address two overarching questions: Do populations of Spodoptera frugiperda (J.E. Smith) vary in their protein-carbohydrate foraging behavior? and Does protein-carbohydrate intake impact S. frugiperda's susceptibility to the Bt toxin Cry1F? RESULTS: All three of our S. frugiperda populations actively regulated their protein-carbohydrate intake, but we observed significant differences between populations with respect to their self-selected protein-carbohydrate intake. We also found that feeding at the protein-carbohydrate intake target slightly increased Cry1F susceptibility for one S. frugiperda population, but had no effect on the other two populations. CONCLUSIONS: Our findings indicate that inherent differences exist in the nutritional physiology of three S. frugiperda populations, possibly related to the time spent in culture. This suggests that population-level differences are an important consideration when drawing parallels between field-collected and laboratory-reared insects.


Assuntos
Bacillus thuringiensis , Proteínas Hemolisinas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Carboidratos , Produtos Agrícolas , Endotoxinas , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Plantas Geneticamente Modificadas/genética , Spodoptera , Zea mays/genética
9.
J Insect Physiol ; 106(Pt 1): 88-95, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28733239

RESUMO

Many animals, including insects, demonstrate a remarkable ability to regulate their intake of key macronutrients (e.g., soluble protein and digestible carbohydrates), which allows them to optimize fitness and performance. Additionally, regulating the intake of these two macronutrients enhances an animal's ability to defend itself against pathogens, mitigate the effects of secondary plant metabolites, and decrease susceptibility to toxins. In this study, we first compared how Bt-resistant and -susceptible lines of Helicoverpa armigera and Helicoverpa punctigera regulate their intake of protein (p) and digestible carbohydrates (c). We found that there was no difference in the self-selected protein-carbohydrate intake target between resistant and susceptible genotypes of either species. We then explored the extent to which food protein-carbohydrate content altered the susceptibility of these species to three Bt toxins: Cry1Ac, Cry2Ab, and Vip3Aa. We found that H. armigera on diets that had protein-carbohydrate profiles that matched their self-selected protein-carbohydrate intake target were significantly less susceptible to Cry1Ac. In contrast, diet protein-carbohydrate content did not affect H. punctigera susceptibility to Cry1Ac. For both H. armigera and H. punctigera, susceptibility to Cry2Ab and Vip3Aa toxins did not change as a function of diet protein-carbohydrate profile. These results, when combined with earlier work on H. zea, suggest food protein-carbohydrate content can modify susceptibility to some Bt toxins, but not others. An increased understanding of how the nutritional environment can modify susceptibility to different Bt toxins could help improve pest management and resistance management practices.


Assuntos
Proteínas de Bactérias , Carboidratos da Dieta , Proteínas na Dieta , Ingestão de Alimentos/genética , Endotoxinas , Proteínas Hemolisinas , Mariposas/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Larva/fisiologia , Dose Letal Mediana
10.
Sci Rep ; 7: 39705, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045087

RESUMO

Pesticide resistance represents a major challenge to global food production. The spread of resistance alleles is the primary explanation for observations of reduced pesticide efficacy over time, but the potential for gene-by-environment interactions (plasticity) to mediate susceptibility has largely been overlooked. Here we show that nutrition is an environmental factor that affects susceptibility to Bt toxins. Protein and carbohydrates are two key macronutrients for insect herbivores, and the polyphagous pest Helicoverpa zea self-selects and performs best on diets that are protein-biased relative to carbohydrates. Despite this, most Bt bioassays employ carbohydrate-biased rearing diets. This study explored the effect of diet protein-carbohydrate content on H. zea susceptibility to Cry1Ac, a common Bt endotoxin. We detected a 100-fold increase in LC50 for larvae on optimal versus carbohydrate-biased diets, and significant diet-mediated variation in survival and performance when challenged with Cry1Ac. Our results suggest that Bt resistance bioassays that use ecologically- and physiologically-mismatched diets over-estimate susceptibility and under-estimate resistance.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Carboidratos/administração & dosagem , Dieta , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas , Lepidópteros/fisiologia , Praguicidas/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Controle Biológico de Vetores , Proteínas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...